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1. Introduction

We consider a positive continuous rv S for which we know the first m
moments.

Applications in actuarial science and quantitative risk management:

S = aggregate claim amount for a portfolio of insurance risks
S = aggregate claim amount for a line of business
S = aggregate losses for a portfolio of investment risks (e.g. credit
risks)

Main objective: evaluate cdf of S i.e. FS
Impossible or very diffi cult to find FS analytically

Possible to use aggregation methods:

Methods based on recursive numerical methods
Methods based on MC simulation

May be very time-consuming to find numerically FS
A moment-based approximation can be used
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2. Definitions and notations

S : rv with cdf FS
j th raw moments : µj (S) = E

[
S j
]
, j ∈N+

Risk measure VaR

VaRκ(S) = F−1S (κ), for κ ∈ (0, 1), where
F−1S (u) = inf {x ∈ R : FS (x) ≥ u}

Risk measure TVaR

TVaRκ (S) = 1
1−κ

∫ 1
κ VaRu (S)du for κ ∈ (0, 1)

TVaRκ (S) =
E [S×1{S>VaRκ (S )}]+VaRκ(S )(FS (VaRκ(S ))−κ)

1−κ

If the rv S is continuous, TVaRκ (S) =
E [S×1{S>VaRκ (S )}]

1−κ

Stop-loss premium :
πS (b) = E [max (S − b; 0)] = E

[
S × 1{S>b}

]
− bFS (b)
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3. Mixed Erlang distribution

Attractive features of this class of distributions: studied by e.g.
Willmot & Woo (2007), Lee & Lin (2010), and Willmot & Lin (2010)

Illustrate the versatility of this distribution to model claim amounts
Illustrate the faisability to obtain closed-form expressions for various
quantities of interest in risk theory.
Provide several non trivial examples of distributions which belong to
the class of mixed Erlang distributions
Provide a detailed procedure to express e.g. mixtures of exponentials,
generalized Erlang distributions in terms of mixed Erlang distributions

Closed under various operations such as convolutions, Esscher
transformations (risk aggregation and ruin problems).

Risk measures VaR, TVaR and stop-loss premium are easily obtained.
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3. Mixed Erlang distribution

Tijms (1994):

class of mixed Erlang distributions is dense in the set of all continuous
and positive distributions
any nonnegative continuous distribution may be approximated by an
Erlang mixture to any given accuracy
Theorem. Let F be the cdf of a positive rv. For any given h > 0,
define the cdf Fh by

Fh (x) =
∞

∑
j=1
(F (jh)− F ((j − 1) h))H

(
x ; j ,

1
h

)
, x ≥ 0,

where H (x ; n, β) is the Erlang cdf. Then, for any continuity point x of
F ,

lim
h→0

Fh (x)→ F (x) .

Moment-based approximation based on class of mixed Erlang dist.
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3. Mixed Erlang distribution

W : mixed Erlang rv with common rate parameter β

Cdf of W : FW (y) =
l

∑
k=1

ζkH(x ; k, β), l finite or infinite

H(x ; k, β) = 1− e−βx
k−1
∑
i=0

(βx )i

i ! : cdf of Erlang rv of order k

ζk : non-negative mass probability associated to the kth Erlang
distribution in the mixture

∑∞
k=1 ζk = 1
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3. Mixed Erlang distribution

Representation of the mixed Erlang distribution as a compound
distribution with discrete primary distribution {ζk}

l
k=1 and secondary

exponential distribution with rate parameter β :

W =
M

∑
k=1

Ck ,

Ck ∼ Exp (β) (k = 1, 2, ...)
M = discrete r.v. with pmf fM (k) = Pr (M = k) = ζk , k ∈N+.

j th raw moment: µj (W ) = ∑∞
k=1 ζk

j−1
∏
i=0
(k+i )

βj

CV (W ) > 1√
l
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3. Mixed Erlang distribution

No general closed-form expression for Value-at-risk but easily
obtained with simple numerical optimization method

VaRκ(W ) = F−1W (u) = inf {x ∈ R : FW (x) ≥ u} , κ ∈ (0, 1)

Explicit expression for Tail Value-at-risk :

TVaRκ (W ) =
1

1− κ

∫ 1

κ
VaRu (W )du, κ ∈ (0, 1)

=
1

1− κ

∞

∑
k=1

ζk
k
β
H (VaRκ (W ) ; k + 1, β) .

Explicit expression for Stop-loss premium:

πW (b) = E [max (W − b; 0)]

=
1

1− κ

∞

∑
k=1

ζk

(
k
β
H (b; k + 1, β)− bH (b; k, β)

)
.
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4. Moment-based approximation methods

One approach : approximate the unknown distribution by a mixture
of known distributions.

Several approximation methods motivated by Tijms’theorem were
proposed over the years

Examples of such methods:

Whitt (1982) :

3 moments and 2 moments
CV (S) > 1 : mixtures of 2 exponential distributions
FW (x) = p1

(
1− e−β1x

)
+ p2

(
1− e−β2x

)
CV (S) < 1 : generalized Erlang distribution

FW (x) = H (x ; β1, ..., βr ) = ∑ri=1

(
r

∏
l=1,l 6=i

βl
βl−βi

)(
1− e−βi x

)
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4. Moment-based approximation methods

Continued...

Altiok (1985) :

3 moments and 2 moments
CV (S) > 1 : mixture of generalized Erlang distribution and exponential
distribution FW (x) = pH (x ; β1, β2) + (1− p)

(
1− e−β1x

)
CV (S) < 1 : generalized Erlang distribution

FW (x) = H (x ; β1, ..., βr ) = ∑ri=1

(
r

∏
l=1,l 6=i

βl
βl−βi

)(
1− e−βi x

)
Johnson & Taaffe (1989) :

3 moments: mixture of two Erlang distributions of common order and
different scale factors
generalize the approximation of Whitt (1982) and Altiok (1985) (for
CV (S) > 1)
more than 3 moments...
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4. Moment-based approximation methods

Substantial body of literature on 3-moment based approximations
within phase-type class of distributions

Matching first 3 moments: effective to provide a reasonable
approximation (see Osogami and Harchol-Balter (2006)) but does not
always suffi ce.

Development of more flexible moment-based approximation methods:

Johnson and Taaffe (1989)
Horvath and Telek (2007)
Our proposed method.
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5. Approx. method based on finite mixed Erlang
distribution

S : rv with m known moments µ1 (S), ..., µm (S)

Idea : map (approximate) FS to a subclass of distributions which
belongs to the class of mixed Erlang distributions

Subclass = class of finite mixed Erlang distributions with

FW (y) =
l
∑
k=1

ζkH(x ; k, β); l < ∞

µj (W ) = E
[
W j ] = ∑lk=1 ζk

j−1
∏
i=0
(k+i )

βj
(j = 1, 2, ...,m)
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5. Approx. method based on finite mixed Erlang
distribution

Consider a set of first m moments
(µ1, ..., µm) = (µ1(W ),µ2(W ),...,µm(W )) and Al = {1, 2, ..., l}
ME(µ1, ..., µm ,Al ) : set of all finite mixtures of Erlang with cdf

F (y) =
l

∑
k=1

ζkH(x ; k, β) and first m moments (µ1,µ2,...,µm).

Identification of all solutions to the problem:

µj (S) =
l

∑
k=1

ζk

j−1
∏
i=0
(k + i)

βj
, j = 1, ...,m.

Constraints: β, {ζk}
l
k=1 are non-negative and

l

∑
k=1

ζk = 1.
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5. Approx. method based on finite mixed Erlang
distribution

ME res (µ1, ..., µm ,Al ) :
(restricted) subset ofME(µ1, ..., µm ,Al ) such that at most m of the

mixing weights {ζk}
l
k=1 are non-zero.

Propose to use it as our class of approximations.
ME res (µ1, ..., µm ,Al1 ) ⊆ME

res (µ1, ..., µm ,Al2 ) for l1 ≤ l2.
Members are identified by rewriting moment expressions in matrix form

Hélène Cossette (Université Laval) July 15th 2014 16 / 48



5. Approx. method based on finite mixed Erlang
distribution

Obtain all sets of m atoms {ik}mk=1 (i1 < i2 < ... < im < l) in
Al = {1, 2, ..., l}

For a given set of atoms {ik}mk=1, µj (S) =
l

∑
k=1

ζk

j−1
∏
i=0
(k+i )

βj
j = 1, ...,m

can be written as:
ATm,mζm =Mβ

ζTm = (ζ i1 , ζ i2 , ..., ζ im ),M =diag(µ1, µ2, ..., µm), β
T = (β, β2, ..., βm)

Am1,m2 =


i1 i2 · · · im1

i1(i1 + 1) i2(i2 + 1) · · · im1(im1 + 1)
...

...
. . .

...
m2−1

∏
i=0

(i1 + i)
m2−1

∏
i=0

(i2 + i) · · ·
m2−1

∏
i=0

(im1 + i)


m1 : number of Erlang terms and m2 : number of moments
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5. Approx. method based on finite mixed Erlang
distribution

ζm =
[
A−1m,mM

]
β under the constraint that eT ζm = 1, with e a

column vector of 1s.

eT
[
A−1m,mM

]
β : polynomial of degree m in β.

Look for positive solutions in β to eT
[
A−1m,mM

]
β = 1.

Complete mixed Erlang representations via identification of mixing
weights through ζm =

[
A−1m,mM

]
β.

Repeat procedure for all possible sets of atoms.
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5. Approx. method based on finite mixed Erlang
distribution

Criteria of quality among all legitimate candidates in
ME res (µ1, ..., µm ,Al ): Kolmogorov-Smirnov (KS) distance
KS distance for two rv’s S and W (with respective cdf FS and FW ):

dKS (S ,W ) = sup
x≥0
|FS (x)− FW (x)| .

Denote by FWm,l this approximation:

dKS (S ,Wm,l ) = inf
FW ∈ME res (µ1,...,µm ,Al )

sup
x≥0
|FS (x)− FW (x)| ,

where Wm,l is a rv with cdf FWm,l .
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6. Numerical examples

Example #1: Weibull rv S
FS (x) = 1− exp

{
− (x/β)τ} for x , τ, β > 0.

Parameters: τ = 1.5 and β = Γ (5/3)
CV = 0.6790.

Consider class of mixed Erlang distributionsME res (µ1, ..., µm ,A20)
with A20 = {1, 2, ..., 20}
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6. Numerical examples

Cardinalities ofME res (µ1, ..., µm ,A20) :

m CardinalityME res (µ1, ..., µm ,A20)
3 298
4 577
5 1010

Resulting mixed Erlang approximations for m = 3, 4:

FW3,20 (x) = 0.0564H(x ; 1, 3.0114) + 0.4097H(x ; 2, 3.0114)

+0.5339H(x ; 4, 3.0114),

FW4,20 (x) = 0.0355H(x ; 1, 3.9083) + 0.2777H(x ; 2, 3.9083)

+0.4966H(x ; 4, 3.9083) + 0.1901H(x ; 7, 3.9083),
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6. Numerical examples

Kolmogorov-Smirnov distances:

m dKS (S ,Wm,20)
3 0.0042
4 0.0020
5 0.0007

Quality of the approximation improves from 3 to 5 moments.
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6. Numerical examples

Comparison of pdfs of W3,20, W4,20, W5,20 and S . The 3-moment
approximation of Johnson and Taffee (1989) is also provided.

Figure: Density function : Weibull τ = 1.5 vs Approximations
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6. Numerical examples

Examine the tail fit: VaR and TVaR for the exact and approximated
distributions

κ VaRκ (W3,20) VaRκ (W4,20) VaRκ (W5,20) VaRκ (S)
0.9 1.9224 1.9334 1.9324 1.9316
0.99 3.0670 3.0647 3.0651 3.0662
0.999 4.0823 4.0116 4.0146 4.0178
0.9999 5.0375 4.8706 4.8734 4.8674

κ TVaRκ (W3,20) TVaRκ (W4,20) TVaRκ (W5,20) TVaRκ (S)
0.9 2.4287 2.4370 2.4361 2.4354
0.99 3.5112 3.4807 3.4823 3.4844
0.999 4.4988 4.3871 4.3901 4.3897
0.9999 5.4378 5.2227 5.2244 5.2083
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6. Numerical examples

Example #2: Lognormal rv S
S = exp (ν+ σZ ) where Z is a standard normal rv

Consider Example 5.4 of Dufresne (2007) where ν = 0 and
σ2 = 0.25.

CV = 0.5329.

Lognormal has a heavier tail than mixed Erlang: no guarantee that
our mixed Erlang approximation would perform well, especially for tail
risk measures.
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6. Numerical examples

Consider class of mixed Erlang distributionsME res (µ1, ..., µm ,A50).
Kolmogorov-Smirnov distances:

m dKS (S ,Wm,50)
3 0.0040
4 0.0018
5 0.0025

KS distance increases from the 4-moment to the 5-moment
approximation.

Remark: FW5,50 uses Erlang-50 cdf, where 50 is the upper boundary
point of A50 : believe that a mixed Erlang approximation with a KS
distance lower than 0.0018 could be found by increasing the value l in
set Al .
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6. Numerical examples

Histograms of the KS distance for all the mixed Erlang distributions
inME res (µ1, ..., µm ,A50), m = 3, 4, 5
KS distances (x-axis) vs counts (y -axis)

Figure: 3-moment approximations
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6. Numerical examples

Figure: 4-moment approximations
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6. Numerical examples

Figure: 5-moment approximations
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6. Numerical examples

Overall quality of the approximations (judged by values and dispersion
of KS distances) increases with number of moments matched.
Comparison of the pdfs of W3,50, W4,50, W5,50, and S . The 3-moment
approximation of Johnson and Taaffe (1989) is also plotted.

Figure: Density function: Lognormal vs Approximations
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6. Numerical examples

All three mixed Erlang approximations provide an overall good fit to
the exact distribution.
To further examine the tail fit, specific values of VaR and TVaR for
the exact and approximated distributions are provided below:

κ VaRκ (W3,50) VaRκ (W4,50) VaRκ (W5,50) VaRκ (S)
0.9 1.9129 1.9056 1.8891 1.8980
0.99 3.1223 3.0991 3.2220 3.2001
0.999 4.9237 5.0623 4.3746 4.6885
0.9999 6.0352 6.2642 6.8895 6.4206

κ TVaRκ (W3,50) TVaRκ (W4,50) TVaRκ (W5,50) TVaRκ (S)
0.9 2.4540 2.4550 2.4697 2.4616
0.99 3.9008 3.8625 3.7700 3.8413
0.999 5.4245 5.5431 5.5204 5.4341
0.9999 6.4189 6.6093 7.4023 7.2879
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6. Numerical examples

VaR and TVaR values of our mixed Erlang approximations compare
reasonably well to their lognormal counterparts.

Improvement is not monotone with the number of moments matched:
well known that increasing the number of moments does not
necessarily lead to a higher quality approximation in
moment-matching techniques.
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6. Numerical examples

Example #3: Real data
Normalized damage amounts from 30 most damaging hurricanes in
United States from 1925 to 1995 (provided by Pielke and Landsea
(1998) and analyzed by Brazauskas et al. (2009)).

Purpose of this example: not to carry an exhaustive statistical
analysis of this dataset, but provide a simple fit with a finite mixed
Erlang distribution

First 4 empirical moments:

j 1 2 3 4
µj 11.7499 317.5154 15604.47 986686.4

CV = 1.1401.
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6. Numerical examples

Perform the approximation withME res (µ1, ..., µm ,A30) for m = 3
and 4.

Kolmogorov-Smirnov distances (with empirical distribution) :

m dKS (S ,Wm,30)
3 0.0773
4 0.0769

Critical value of the KS hypothesis test at a significance level of 1%:
1.63/

√
30 = 0.2976

Do not reject both distributions as a plausible model for the dataset.
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6. Numerical examples

Figure: Cdf: Empirical vs W3,30
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7. Moment-based approx. with known rate parameter

Slightly different context.

Distribution function FS is known to be of mixed Erlang form with
known β > 0 and (µ1, µ2, ..., µm).

Distribution itself unknown or diffi cult to evaluate.

Restrict to sets of finite mixture of Erlang distributions.
Bounds on risk measures can be established.

Connection with extremal points of a discrete moment-matching
problem.
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7. Moment-based approx. with known rate parameter

FS ∈ ME(µ1, ..., µm , β): set of all mixed Erlang dist. for l = ∞, rate
parameter β and first m moments (µ1, ..., µm).

ME(µ1, ..., µm ,Al , β): subset ofME(µ1, ..., µm , β) for a given
l ∈N+.

ME ext (µ1, ..., µm ,Al , β): subset ofME(µ1, ..., µm ,Al , β) such that
at most (m+ 1) of mixing weights {ζk}

l
k=1 are non-zero.

Consider two approaches to derive bounds on E [φ(S)] for φ a given
function (such that expectation exists):

Based on discrete s-convex extremal distributions
Based on moment bounds on discrete expected stop-loss transforms
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8. Discrete s-convex extremal distributions

D(α1, ..., αm ,Al ) : all discrete dist. with support Al with first m
moments α = (α1, ..., αm).

Dext (α1, ..., αm ,Al ) : all discrete dist. with support Al with at most
(m+ 1) non-zero mass points with first m moments are α.

For a given β > 0 : one-to-one correspondence between discrete
classes and mixed-Erlang classes

Each dist. in D(α1, ..., αm ,Al ) (and Dext (α1, ..., αm ,Al )) corresponds
to a mixed Erlang dist. inME(µ1, ..., µm ,Al , β) (and
ME ext (µ1, ..., µm ,Al , β)) (see De Vylder 1996)
Allows to use theory on sets of discrete distributions e.g. in Prékopa
(1990), Denuit, Lefèvre and Mesfioui (1999), Courtois et. al (2006).
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8. Discrete s-convex extremal distributions

Definition s-convex: Let C be a subinterval of R or a subset of N

and φ a function on C . For two rv’s X and Y defined on C , X is said
to be smaller than Y in the s-convex sense, namely X �Cs−cx Y , if
E [φ(X )] ≤ E [φ(Y )] for all s-convex functions φ.

Examples of s-convex functions: φ(x) = x s+j and φ(x) = exp(cx) for
c ≥ 0.
Ks ,min and Ks ,max: s-extremum rv’s on D(α1, ..., αm ,Al )

E [φ(Ks ,min)] ≤ E [φ(K )] ≤ E [φ(Ks ,max)]

for any s-convex function φ and any K ∈ D(α1, ..., αm ,Al ).
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8. Discrete s-convex extremal distributions

General distribution forms of Ks ,min and Ks ,max are given in Prékopa
(1990) and Courtois et al. (2006)

WK =
K

∑
j=1
Cj be a mixed Erlang rv.

Denuit, Lefèvre and Utev (1999) state that the s-convex order is
stable under compounding.
Lemma: If K �Als−cx K ′‘, then WK �R+

s−cx WK ′ .
Can apply this Lemma to WKs−min and WKs−max :

WKs−min �R+

s−cx WK �R+

s−cx WKs−max

Allows to find general distribution forms of FWKs−min
and FWKs−max

For s-convex functions φ(x) = x s+j and φ(x) = exp(cx),can obtain
bounds:

E
[
W s+j
Ks−min

]
≤ E [WK ] ≤ E

[
W s+j
Ks−max

]
E
[
exp(cWKs−min)

]
≤ E [exp(cWK )] ≤ E [exp(cWKs−max)]
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9. Moment bounds on discrete expected stop-loss
transforms

Extrema with respect to s-convex order allows to derive bounds on
E [φ(S)] for all s-convex functions φ.

Approach not appropriate to derive bounds for TVaR and stop-loss
premium when m ≥ 2.
Use an approach (based on increasing convex order) inspired from
Courtois and Denuit (2009) and Hürlimann (2002).

Main idea:

consider D(α1, ..., αm ,Al ) for m ∈ {2, 3, ...}
find lower and upper bounds for E [(K − k)+] on D(α1, ..., αm ,Al ) for
all k ∈ Al
from lower (upper) bound, derive corresponding rv Km−low (Km−up)
E [(Km−low − k)+] ≤ E [(K − k)+] ≤ E [(Km−up − k)+] on
D(α1, ..., αm ,Al ) for all k ∈ Al
implies under the increasing convex order: Km−low �icx K �icx Km−up
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9. Moment bounds on discrete expected stop-loss
transforms

Increasing convex order is stable under compounding:

WKm−low �icx WK �icx WKm−up

From Denuit et al. (2005):

TVaR(WKm−low ) ≤ TVaR(WK ) ≤ TVaR(WKm−up )
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10. Example - Portfolio of dependent risks

Portfolio of n dependent risks (common mixture model of Cossette
and al. (2002))

S = X1 + ...+ Xn : aggregate claim amount with Xi = Bi Ii .

Conditional on a common mixture rv Θ with pmf pΘ, {Ii}ni=1 are
assumed to form a sequence of independent Bernoulli rv’s with

Pr (Ii = 1 |Θ = θ ) = 1− ri θ for ri ∈ (0, 1) .

Bi (i = 1, ..., n) are assumed to form a sequence of iid rv’s,
independent of {Ii}20i=1 and Θ.
Bi (i = 1, ..., n) : exponentially distributed with mean 1
Distribution of S : two-point mixture of a degenerate rv at 0 and a
mixed Erlang with l = n and β = 1.
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10. Example - Portfolio of dependent risks

Parameters:
n = 20 risks
Θ has a logarithmic distribution with pmf pΘ (j) = (0.5)

j /(j ln 2) for
j = 1, 2, ...
constants ri are set such that the (unconditional) mean of Ii is

qi = 1− E
[
(ri )

Θ
]
with q1 = ... = q10 = 0.1 and

q11 = ... = q20 = 0.02. It

Perform moment-based approximation on rv Y = (S |S > 0 ) rather
than S

j-th moment of Y : µ′j ≡ E
[
Y j
]
=

E [S j ]
1−FS (0)

CV (Y ) = 0.9603.
Methods of Whitt (1982) and Altiok (1985) not applicable here:
constraints on CV and third moment (µ3µ1 ≥ 1.5µ2

2) not satisfied.
Method of Johnson and Taaffe (1989): r = 2, β1 = 0.7627,
β2 = 2.8939 and p = 0.5742.
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10. Example - Portfolio of dependent risks

First approach: discrete s-convex extremal distributions
Find cdfs FWKs−min

and FWKs−max
for m = 4, 5 (s = m+ 1)

Consider two distributional characteristics of S :

higher-order moments E
[
S j
]
for j = 4, 5, 6

exponential premium principle ϕη (S) =
1
η lnE

[
eηS
]
for η > 0.

Distributions FWKm+1−min
and FWKm+1−max

provide bounds to these risk
measures associated to the rv S
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10. Example - Portfolio of dependent risks

Bounds on E
[
S j
]
and ϕη (S) =

1
η lnE

[
eηS
]

:

j E
[
W j
K5−min

]
E
[
W j
K6−min

]
E
[
S j
]

E
[
W j
K6−max

]
E
[
W j
K5−max

]
4 138.7579 138.7579 138.7579 138.7579 138.7579
5 1125.9592 1129.1880 1129.1880 1129.1880 1149.9348
6 10748.5738 10873.8020 10881.2732 10922.7337 11993.6176

θ ϕη

(
WK5−min

)
ϕη

(
WK6−min

)
ϕη (S) ϕη (WK6−max) ϕη (WK5−max)

0.2 1.5545 1.5546 1.5546 1.5548 1.5564
0.1 1.3536 1.3536 1.3536 1.3536 1.3536
0.01 1.2137 1.2137 1.2137 1.2137 1.2137

Bounds get sharper as the number of moments involved increases.
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10. Example - Portfolio of dependent risks

Second approach: moment bounds with discrete expected
stop-loss transforms
Values of TVaR for WKm−low and WKm−up (m = 4, 5):

Exact J&T TVaRκ (...) for m = 3
κ TVaRκ (S) TVaRκ (W ) W3−low W3−up
0.9 5.0696 5.1389 4.798911 5.333275
0.95 6.2214 6.2563 5.771565 6.615174
0.99 8.8460 8.7491 7.911982 9.675684
0.995 9.9589 9.7892 8.799191 11.116631
0.999 12.5066 12.156 10.805712 15.181871
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10. Example - Portfolio of dependent risks

Exact TVaRκ(...) for m = 4 TVaRκ(...) for m = 5
κ TVaRκ (S) WK4−low WK4−up WK5−low WK5−up
0.9 5.0696 4.9222 5.2062 4.9800 5.1490
0.95 6.2214 5.9708 6.4548 6.0594 6.3642
0.99 8.8460 8.2899 9.3301 8.4655 9.1767
0.995 9.9589 9.2500 10.5629 9.4679 10.3775
0.999 12.5066 11.4122 13.4854 11.7323 13.1382

Inequality verified:

TVaR(WKm−low ) ≤ TVaR(WK ) ≤ TVaR(WKm−up )

Interval estimate of TVaRκ (S) shrinks as number of moments
matched increases.
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